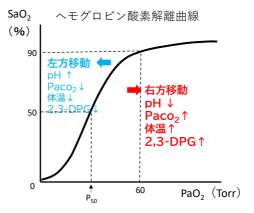
動脈血ガス分析


基準値

рН	7.35~7.45
PaO ₂	80~100 Torr
PaCO ₂	35~45 Torr
HCO ₃ -	22~26 mEq/L
BE	-2~+2 mEq/L
SaO ₂	96~99 %

*PaO2 60TorrはSaO2 90%に相当

60をひっくり返して90と覚える!

*PaO₂ 60Torr以下→<mark>呼吸不全</mark> I型 PaCO₂ 45Torr以下 II型 PaCO₂ 45Torr以上

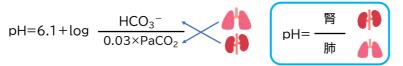
1

動脈血液ガス分析

- 1)検体の取り扱い
- ・抗凝固剤:ヘパリン
- 2) 測定上の注意
- ・測定直前に注射器を十分回転し、検体を混和させる。
- ・検体注入前に、血液をガーゼなどに1~2敵落とし捨てる。
- 3)血液ガス分析装置
- ・pH、PaO2、PaCO2を測定し、HCO-、BE、SaO2は計算により算出。
- 4)基準値に影響する因子

空気中のO2 760×0.21=159.6Torr

·室温放置によりPaO₂↓ PaCO₂↑ pH↓


(測定までに10分以上かかる場合は氷水中に保存する。30分以内に測定する)

- ·気泡混入 PaO₂↑
- ·WBC高値 PaO₂↓
- ·PaO₂ 成人では<mark>加齢により低下</mark>
- ·PaO₂ 仰臥位<座位

酸-塩基平衡障害

·Henderson-Hasselbalchの式によりpHは調節されている。

生体は常に酸を産生している。酸を体の外に出すことができるのは、 $\hbar(PaCO_2)$ と腎臓 $(HCO3^-)$ である。

				•
	На	PaCO ₂	HCO ₃ -	病態·疾患
呼吸性 アシドーシス	\	1	腎性代償で ↑	肺気腫(COPD) 肺胞低換気
呼吸性 アルカローシス	1	\	腎性代償で ↓	過換気症候群、間質性肺 炎
代謝性 アシドーシス	\	呼吸性代償で ↓	\	腎不全、糖尿病性ケトア シドーシス、飢餓
代謝性 アルカローシス	1	呼吸性代償で ↑	1	大量の嘔吐、利尿剤投与など